This Day in Tech History

On This Day . . .

Hold On…Right Now You Are Rotating At 1,037 MPH



September 18, 1819: Léon
Foucault Born

It’s easy to forget that while you read this article, you are rotating at 1,037 miles per hour . . . while orbiting the sun at 67,000 m.p.h. All this as our solar system whips around the galaxy at more than 420,000 m.p.h.

Two centuries ago, it was difficult for people to envision this. Léon Foucault helped devise a method to make celestial orbits a bit easier to understand. Foucault created his breakthrough pendulum demonstrations and was able to model the Earth’s rotation.


Jean Bernard Léon Foucault

Jean Bernard Léon Foucault was born in Paris in 1819. While Foucault received a medical education, the profession did not quite suit him. The young doctor had a distaste for bloody medical dissections. But he was brilliant when it came to making models, tools, and devices.


And Foucault’s craftsmanship came in handy.

Foucault and a series of teachers, bosses, and partners tackled many scientific questions by building contraptions that could make hard-to-grasp phenomena’s more tangible. Foucault was able to measure the speed of light. He improved the daguerreotype, an early form of photography. He found a way to prove that light is a wave, not a beam of particles. He named the gyroscope, a stabilizing tool found in everything from toys to the International Space Station.

In 1851, Foucault made one of his best-remembered experiments: the scientist devised the first model to demonstrate the rotation of the earth on its axis.

People had tried many different ways to explain Earth’s rotation before Foucault. One group had even launched cannon balls up into the air with the hopes that the world would spin enough that they could measure the deviation once the ball plummeted back to earth.


Compared to that loud, inaccurate (and dangerous) plan, Foucault’s solution was remarkably elegant. He strung up a brass weight at the end of six-foot wire. The metal ball hung over a pile of damp sand, just close enough that the brass point brushed against the sand as it swung slowly back and forth. At first, the pendulum simply carved a straight line in the sand. But over the course of several hours, the line turned into a bow-tie shape.

Newton’s laws of motion state that an object will not change direction unless another force hits it. This means that while Foucault’s pendulum kept swinging in the same direction, the earth (and the sand on the ground) turned underneath it. It’s as if you drew a line back and forth repeatedly on a piece of paper, but then slowly rotated the sheet as you kept drawing – eventually the lines would form a circle.

Foucault’s experiment became a sensation. The French government even ordered a large-scale version that would hang inside the Pantheon in Paris, with a 219-foot, 61-pound pendulum suspended from the building’s dome. Modern-day pendulums hang in the United Nations headquarters in New York, the California Academy of Sciences in San Francisco, the Boston Museum of Science, and many other locations.

Foucault's pendulum at the Pantheon in Paris

Foucault’s pendulum at the Pantheon in Paris

UN Headquarters in NY

UN Headquarters in NY

California Academy of Sciences in San Francisco

California Academy of Sciences in San Francisco

Boston Museum of Science

Boston Museum of Science

Since Earth spins on an axis, each of these “Foucault pendulums” turns at a slightly different rate, demonstrating that different parts of the globe rotate at different speeds. At the North Pole, a Foucault pendulum would turn 15 degrees per hour, making a full 360-degree circle each day, while in Paris, the pendulum would only turn about 11 degrees an hour, requiring 32.7 hours to make a complete round. On the equator, the pendulum would not appear to spin at all.

In recognition of his many achievements, Foucault is among the 72 French engineers, scientists, and mathematicians whose names are engraved on the Eiffel Tower.


Among other things, Foucault also discovered eddy currents, is credited with naming the gyroscope, which is used today in compasses, aircraft, computer pointing devices and other consumer electronics. He also invented a polarizer and devised a test to determine the shape of the mirror of a reflecting telescope called the Foucault knife-edge test, which is still used today.

Single Post Navigation

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: